Back to Table of contents

Primeur weekly 2019-12-16

Quantum computing

Atos boosts quantum application development through the creation of the first Quantum User Group ...

D-Wave signs agreements with NEC to accelerate commercial quantum computing ...

D-Wave announces promotion of Dr. Alan Baratz to CEO ...

Intel introduces 'Horse Ridge' to enable commercially viable quantum computers ...

Focus on Europe

Europe's largest initiative for excellence in human-centred artificial intelligence opens its headquarters in The Hague, the Netherlands ...

HLRS receives two certifications for environmental responsibility ...

Amsterdam knowledge institutes to invest 1 billion euro in Artificial Intelligence ...

Jet de Ranitz appointed as new CEO SURF ...

Lenovo and Intel partner for Vienna Scientific Cluster-4 supercomputer enabling research from climate change to the origin of the Universe ...

Middleware

InfiniteIO wins Vendor Innovation Award at the Channel Partner Insight Channel Innovation Awards 2019 ...

WekaFS selected by Innoviz to accelerate AI for autonomous vehicle innovations ...

Hardware

CoolIT Systems adds experienced manufacturing and supply chain leader ...

Supermicro Second Annual Green Data Centre Report finds opportunity for saving millions in energy costs, and reductions in e-waste ...

GRC expands global footprint by opening operations in India ...

HDR 200Gb/s InfiniBand sees major growth on November 2019 TOP500 supercomputers list ...

NII start operation 400 Gbps link to speed up SINET supporting Japan's academic research ...

Applications

CLASS software framework makes Modena smarter in real-life setting ...

NCSA engineers travel to Chilean base data centre and summit for LSST project ...

Global Unichip Corporation uses Cadence digital implementation and signoff flow to deliver advanced-node designs for AI and HPC applications ...

Bonseyes partners with HPC leader Verne Global to power open AI innovation ...

World's largest computing society announces 2019 Fellows ...

Researchers to tackle the mysteries of the AI 'black box' problem ...

Simulations attempt to reconstruct one of the most explosive events in the universe: A neutron star merger ...

The Cloud

Organisations globally select VMware Cloud on AWS as the foundation for their Cloud strategy ...

Pioneering nanotechnology Cloud - nanoHUB - looks to future ...

Intel introduces 'Horse Ridge' to enable commercially viable quantum computers


Stefano Pellerano, principal engineer at Intel Labs, holds Horse Ridge. The new cryogenic control chip will speed development of full-stack quantum computing systems, marking a milestone in the development of a commercially viable quantum computer. Credit: Walden Kirsch/Intel Corporation.
9 Dec 2019 Santa Clara - Intel Labs has unveiled what is believed to be a first-of-its-kind cryogenic control chip - code-named "Horse Ridge" - that will speed up development of full-stack quantum computing systems. Horse Ridge will enable control of multiple quantum bits (qubits) and set a clear path toward scaling larger systems - a major milestone on the path to quantum practicality. Developed together with Intel's research collaborators at QuTech, a partnership between TU Delft and TNO, Netherlands Organization for Applied Scientific Research, Horse Ridge is fabricated using Intel's 22nm FinFET technology. In-house fabrication of these control chips at Intel will dramatically accelerate the company's ability to design, test and optimize a commercially viable quantum computer.

"While there has been a lot of emphasis on the qubits themselves, the ability to control many qubits at the same time had been a challenge for the industry. Intel recognized that quantum controls were an essential piece of the puzzle we needed to solve in order to develop a large-scale commercial quantum system. That's why we are investing in quantum error correction and controls. With Horse Ridge, Intel has developed a scalable control system that will allow us to significantly speed up testing and realize the potential of quantum computing", stated Jim Clarke, Intel's director of Quantum Hardware.

In the race to realize the power and potential of quantum computers, researchers have focused extensively on qubit fabrication, building test chips that demonstrate the exponential power of a small number of qubits operating in superposition. However, in early quantum hardware developments - including design, testing and characterization of Intel's silicon spin qubit and superconducting qubit systems - Intel identified a major bottleneck toward realizing commercial-scale quantum computing: interconnects and control electronics.

With Horse Ridge, Intel introduces an elegant solution that will enable the company to control multiple qubits and set a clear path toward scaling future systems to larger qubit counts - a major milestone on the path to quantum practicality.

Quantum computers promise the potential to tackle problems that conventional computers can't handle by leveraging a phenomena of quantum physics that allows qubits to exist in multiple states simultaneously. As a result, qubits can conduct a large number of calculations at the same time - dramatically speeding up complex problem-solving.

The quantum research community is still at mile one of a marathon toward demonstrating quantum practicality, a benchmark against which the quantum research community can determine whether a quantum system can deliver game-changing performance to solve real-world problems. Intel's investment in quantum computing covers the full hardware and software stack in pursuit of the development and commercialization of a practical, commercially viable quantum system.

To date, researchers have been focused on building small-scale quantum systems to demonstrate the potential of quantum devices. In these efforts, researchers have relied on existing electronic tools and high-performance computing rack-scale instruments to connect the quantum system inside the cryogenic refrigerator to the traditional computational devices regulating qubit performance and programming the system.

These devices are often custom-designed to control individual qubits, requiring hundreds of connective wires into and out of the refrigerator in order to control the quantum processor. This extensive control cabling for each qubit will hinder the ability to scale the quantum system to the hundreds or thousands of qubits required to demonstrate quantum practicality, not to mention the millions of qubits required for a commercially viable quantum solution.

With Horse Ridge, Intel radically simplifies the control electronics required to operate a quantum system. Replacing these bulky instruments with a highly-integrated system-on-chip (SoC) will simplify system design and allow for sophisticated signal processing techniques to accelerate set-up time, improve qubit performance and enable the system to efficiently scale to larger qubit counts.

Horse Ridge is a highly integrated, mixed-signal SoC that brings the qubit controls into the quantum refrigerator - as close as possible to the qubits themselves. It effectively reduces the complexity of quantum control engineering from hundreds of cables running into and out of a refrigerator to a single, unified package operating near the quantum device.

Designed to act as a radio frequency (RF) processor to control the qubits operating in the refrigerator, Horse Ridge is programmed with instructions that correspond to basic qubit operations. It translates those instructions into electromagnetic microwave pulses that can manipulate the state of the qubits.

Named for one of the coldest regions in Oregon, the Horse Ridge control chip was designed to operate at cryogenic temperatures - approximately 4 Kelvin. To put this in context, 4 Kelvin is only warmer than absolute zero - a temperature so cold that atoms nearly stop moving.

This feat is particularly exciting as Intel progresses its research into silicon spin qubits, which have the potential to operate at slightly higher temperatures than current quantum systems require.

Today, a quantum computer operates at in the millikelvin range - just a fraction of a degree above absolute zero. But silicon spin qubits have properties that could allow them to operate at 1 Kelvin or higher temperatures, which would dramatically reduce the challenges of refrigerating the quantum system.

As research progresses, Intel aims to have cryogenic controls and silicon spin qubits operate at the same temperature level. This will enable the company to leverage its expertise in advanced packaging and interconnect technologies to create a solution with the qubits and controls in one streamlined package.

Source: Intel

Back to Table of contents

Primeur weekly 2019-12-16

Quantum computing

Atos boosts quantum application development through the creation of the first Quantum User Group ...

D-Wave signs agreements with NEC to accelerate commercial quantum computing ...

D-Wave announces promotion of Dr. Alan Baratz to CEO ...

Intel introduces 'Horse Ridge' to enable commercially viable quantum computers ...

Focus on Europe

Europe's largest initiative for excellence in human-centred artificial intelligence opens its headquarters in The Hague, the Netherlands ...

HLRS receives two certifications for environmental responsibility ...

Amsterdam knowledge institutes to invest 1 billion euro in Artificial Intelligence ...

Jet de Ranitz appointed as new CEO SURF ...

Lenovo and Intel partner for Vienna Scientific Cluster-4 supercomputer enabling research from climate change to the origin of the Universe ...

Middleware

InfiniteIO wins Vendor Innovation Award at the Channel Partner Insight Channel Innovation Awards 2019 ...

WekaFS selected by Innoviz to accelerate AI for autonomous vehicle innovations ...

Hardware

CoolIT Systems adds experienced manufacturing and supply chain leader ...

Supermicro Second Annual Green Data Centre Report finds opportunity for saving millions in energy costs, and reductions in e-waste ...

GRC expands global footprint by opening operations in India ...

HDR 200Gb/s InfiniBand sees major growth on November 2019 TOP500 supercomputers list ...

NII start operation 400 Gbps link to speed up SINET supporting Japan's academic research ...

Applications

CLASS software framework makes Modena smarter in real-life setting ...

NCSA engineers travel to Chilean base data centre and summit for LSST project ...

Global Unichip Corporation uses Cadence digital implementation and signoff flow to deliver advanced-node designs for AI and HPC applications ...

Bonseyes partners with HPC leader Verne Global to power open AI innovation ...

World's largest computing society announces 2019 Fellows ...

Researchers to tackle the mysteries of the AI 'black box' problem ...

Simulations attempt to reconstruct one of the most explosive events in the universe: A neutron star merger ...

The Cloud

Organisations globally select VMware Cloud on AWS as the foundation for their Cloud strategy ...

Pioneering nanotechnology Cloud - nanoHUB - looks to future ...